Как правильно проверить, работает ли конденсатор?

Как правильно проверить, работает ли конденсатор?

Иногда возникает необходимость проверки электронных элементов, в том числе и конденсаторов.
По разнообразным причинам конденсаторы выходят из строя, это может быть внутреннее короткое замыкание, увеличение тока утечки пробой конденсатора в следствие превышения максимально допустимого напряжения или же обычное уменьшение емкости – причина которая со временем постигает почти все электролитические конденсаторы.

Методы проверки конденсатора, мы рассмотрим, довольно простые, здесь главное умение пользоваться тестером или мультиметром и правильно применять данную инструкцию.

Для начала необходимо знать что все конденсаторы разделяются на полярные и неполярные. К полярным относятся электролитические конденсаторы, к неполярным все остальные.

Полярные конденсаторы в схеме должны стоять таким образом чтоб на обозначенном минусовом выводе был минус питания, а на плюсовом контакте плюс, только так ы не иначе.

Если нарушить полярность то минимум что будет это конденсатор выйдет из строя, но при достаточном напряжение он вздуется и взорвется, для того чтоб при аварийной ситуации конденсатор не разрывало на осколки, в импортных конденсаторах, в верхней части корпус сделан с тонкого материала и нанесены специальные разделительные прорези, при взрыве такой конденсатор просто выстреливает вверх и не задевает при этом элементы вокруг себя.

Перед проверкой конденсатор необходимо обязательно разрядить любым металлическим предметом закоротив его выводы, и так перед каждой проверкой.
Если проверяемый конденсатор находится на плате, необходимо хотя бы один его вывод освободить от схемы и приступить тогда уже к замерам. Но так как большинство современных конденсаторов имеют достаточно низкую посадку – лучше конденсатор выпаять полностью.

Проверка конденсатора мультиметром

С помощью мультиметра можно проверить практически любой конденсатор по емкости больше 0.25 микрофарад.

Полярность конденсатора обозначена на корпусе в виде поздовжной полосы с знаками минус – это минусовой вывод конденсатора.

И так выставляем тестер в режим или прозвонки или сопротивления. Мультиметр в таком режиме будет иметь на своих щупах постоянное напряжение.
Касаемся щупами контактов конденсатора и видим как показатель сопротивления плавно растет – конденсатор заряжается.
Скорость заряда будет напрямую зависеть от емкости конденсатора. Через определенное время конденсатор зарядится и на дисплее мультиметра будет значение “1” или по другому говоря “бесконечность” это уже говорит о том что конденсатор не пробит и не замкнут.

Но если при касание щупами контактов конденсатора мы сразу наблюдаем значение “1” то это говорит об внутреннем обрыве – конденсатор не исправен.
Бывает и другое, значение “000” или близкое очень малое значение которое не меняется (при зарядке) иногда мультиметр пищит, это говорит о пробое или коротком замыкание пластин внутри конденсатора.

Неполярные конденсаторы проверяются довольно просто, тестер выставляем в режим измерения сопротивления (мегаОмы), касаясь щупами контактов конденсатора – сопротивление должно быть не меньше 2 МегОм. Если наблюдается меньше то конденсатор неисправен, но убедитесь что вы в момент замера не касались пальцами щупов.

Проверка конденсаторов стрелочным тестером

Проверяя стрелочным прибором. Суть проверки та же что и мультиметром, но здесь можно уже более наглядно наблюдать процесс зарядки конденсатора потому как мы видим отклонения стрелки а не мигающие цифры на дисплее.

Исправный конденсатор при контакте с щупами, не забываем разряжать, должен сначала отклонить стрелку а затем медленно и плавно возвращать стрелку назад, скорость возврата стрелки будет зависеть от емкости конденсатора.
Если стрелка не отклоняется или же отклонившись не возвращается это говорит о явной неисправности конденсатора.

Но если емкость конденсатора очень мала, “зарядки” можно и не заметить – практически сразу же стрелка уйдет в бесконечность, то есть не сдвинется с места. Для конденсатора же более 500 микрофарад – такая картина практически сразу же будет говорить о внутреннем обрыве.
Хорошим способом будет проверка заведомо исправного конденсатора (для наглядности) и сравнение с испытуемым. Такой способ даст возможность более уверено ответить на вопрос – рабочий ли конденсатор?

Проверка переменным напряжением

Так как невозможно наблюдать столь быстрый процесс заряда для проверки конденсаторов малой емкости есть специальный способ который с точностью определит нет ли обрыва в нем.
Собирается небольшая схемка состоящая с последовательно соединенных конденсатора, амперметра переменного тока и токоограничительного резистора.
Соединенную цепь подключают к источнику переменного напряжения, с напряжением не больше 20% от максимального напряжения конденсатора.
Если стрелка амперметра не отклоняется это говорит об внутреннем обрыве конденсатора

Проверяем емкость конденсатора

Для проверки емкости нам нужно убедится что реальная емкость конденсатора соответствует указанной на его корпусе.
Все электролитические конденсаторы со временем (в процессе работы) “подсыхают” и теряют свою емкость, это естественный процесс и для каждой конкретной схемы существуют свои припуски и отклонения.

Проверяют емкость мультиметром в режиме “Cx” выбирают примерную емкость с максимальным пределом.
Конденсатор разряжают об металлический предмет, например пинцет и вставляют в гнездо проверки конденсаторов.
Для более точных показаний необходимо следить за тем чтоб в мультиметре стояла новая и не розряженая “крона”.

Применяют и специальные приборы внешне схожие с мультиметром, которые специализированы конкретно для проверки конденсаторов и имеют достаточно широкий диапазон измерений емкости, от единиц пикофарад до десятков тысяч микрофарад, не каждый профессиональный мультиметр может похвастаться и половиной того диапазона емкостей.

Но если у вас под рукой нет ни мультиметра ни “микрофарадметра” можно достаточно приблизительно замерить емкость стрелочным омметром.
Как писалось выше, конденсатор заряжают прикасаясь щупами к его контактам – “засекаем” время отклонения стрелки назад и сравниваем время с заведомо исправным (новым) конденсатором, если время сильно не отличается то емкость в пределах нормы и конденсатор исправен.

Таким же способом можно определить ток утечки конденсатора. Для этого конденсатор щупами заряжают до отклонения стрелки назад.
С интервалом несколько секунд (зависит от емкости) щупы прикладывают снова, если стрелка снова проделывает такой же весь путь то это говорит о повышенном токе утечки и уже частичном неисправности конденсатора. В исправного же конденсатора в течение несколько секунд, чем больше емкость тем больше времени, должен сохранятся “заряд” и стрелка уже не должна показывать столь низкое сопротивление вначале как при первой зарядке.

“Зарядка напряжением”.
Такой способ проверки аналогичной ситуации подходит для более высоковольтных конденсаторов так как на малом напряжение (от тестера) может быть не понятна вся ситуация.
И так суть способа заключается в том что конденсатор заряжают от источника постоянного напряжения, для этого напряжение выбирают немного меньше максимального и заряжают контакты конденсатора, как правило хватит 1-2 секунды. После чего “зарядку” отсоединяют и мультиметром измеряют напряжение на контактах конденсатора, оно должно быть практически таким же что и использовалось при зарядке, если это ни так и оно сильно занижено то у конденсатора большой ток утечки и он неисправен.

Читайте также:
Керамогранит на стены в ванной: можно ли класть и чем сверлить

Мултиметром наблюдают напряжение в течение некоторого времени, конденсатор будит плавно терять напряжение, скорость будит зависеть от емкости и ESR (внутреннего сопротивления).

Как проверить конденсатор без приборов?
В некоторых ситуациях при отсутствие омметра или вольтметра, исправность электролитического конденсатора можно проверить только лишь при наличие источника подходяще допустимого напряжения. Конденсатор в течение 1-2 секунд заряжают, а затем нужно замкнуть его контакты металлической отверткой.
У исправного конденсатора должна появится яркая искра. Если же она тусклая или же едва заметная то это говорит о том что конденсатор неисправен и плохо держит заряд.

Как проверить конденсатор мультиметром

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Модели мультиметров на Aliexpress

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Читайте также:
Как правильно подключить розетку — подробная инструкция

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Как продиагностировать мультиметром конденсатор: общие рекомендации и принципы проведения измерений

Конденсаторы встречаются в самой разной технике. Но они зачастую и приводят к неисправностям механизмов. Для того, чтобы своевременно определить неисправность и устранить её, необходимо понимать общие принципы проверки конденсатора мультиметром. Этот способ является наиболее простым.

Рассмотрим варианты применения недорогого и эффективного прибора, чтобы выявить элементы, вышедшие из строя. В статье подробно представлены различные виды конденсаторов, а также последовательность их проверки. Благодаря практическим советам вы без труда сможете обнаружить неисправность в любой схеме.

Для чего используют конденсатор?

Промышленная отрасль производит самые разнообразные конденсаторы, которые затем используются во многих областях. Они требуются в следующих отраслях:

  • автомобилестроении;
  • радиотехнике;
  • электронике;
  • электробытовой технике;
  • приборостроении.

Конденсаторы можно назвать «сосудами» для хранения энергии. Они отдают энергию при коротких сбоях в питании. Кроме вышеперечисленного, специальный вид данных компонентов отделяет нужные сигналы, определяет частоту устройств, которые формируют сигналы. Конденсатор имеет быстрый период зарядки-разрядки.

Справка! Данный электрический элемент (конденсатор) располагает в своём составе парой проводников — это токопроводящие обкладки. При пропускании постоянного тока цепью его запрещено включать, так как это будет равносильно разрыву цепи.

В электроцепи переменного тока обкладки конденсатора попеременно заряжаются с частотой проходящего тока. Это можно объяснить следующим: зажимы данного источника тока время от времени подвергаются смене напряжения. Далее в цепи появляется ток переменного характера.

Подобно катушке, а также резистору, конденсатор оказывает переменному току сопротивление. Следует учесть, для токов различных частот оно будет разным. Например, проявляя хорошую пропускную способность для токов высокочастотных, он будет оказывать изолирующие свойства для токов низкочастотных.

Сопротивление электрического компонента взаимосвязанно с частотой, а также ёмкостью тока.

Неполярные и полярные разновидности

Среди многообразия конденсаторов следует выделить два основных типа: полярные или электролитические, а также неполярные. В качестве диэлектрика в данных приборах используют — стекло, бумагу и воздух.

Специфика полярных конденсаторов

Само название наглядно говорит о том, что они имеют полярность, потому являются электролитическими. Потребуется верное и точное следование схеме, когда их будут подключать — «минус» к «минусу», а «плюс» к «плюсу». Если не соблюдать данное правило, то элемент не только утратит работоспособность, но вполне способен взорваться. Электролит встречается как в состоянии твёрдом, так и в жидком.

В качестве диэлектрика в устройствах применяется бумага, которая пропитана электролитом. Ёмкость варьируется в пределах от 0,1 тыс. и до 100 тыс. МкФ.

Справка! Полярные конденсаторы предназначены для выравнивания электрофильтрации поступающих сигналов. Метка «+» имеет большую длину. Пометка «-» обозначена на самом корпусе.

Когда происходит замыкание пластин, то осуществляется выделение тепла. Под его действием происходит испарение электролита, а затем следует взрыв.

Сверху у конденсаторов современного исполнения имеется крестик и незначительное вдавливание. Толщина вдавлиной части немного меньше, чем остальная поверхность. Если происходит взрыв, тогда верхний участок открывается, как роза. Поэтому при наблюдении за повреждённым элементом можно заметить вспучивание на корпусе.

Отличительные особенности неполярных конденсаторов

Плёночные неполярные части используют диэлектрик из керамики, а также из стекла. Если сравнивать с конденсаторами электролитическими, то у них самозаряд меньше. Это можно объяснить тем, что керамика имеет более высокое сопротивление, чем бумага.

Конденсаторы подразделяются на детали как специального назначения, так и общего. Они бывают следующими:

  1. Пусковыми. Используются для поддержания надёжной и качественной работы электродвигателей. Увеличивают в двигателе стартовый момент, например, это компрессор или насосная станция, осуществляющие запуск.
  2. Дозиметрическими. Предназначены для работы в цепях, в которых незначительный показатель токовых нагрузок. У них необъёмный самозаряд, но сопротивление изоляции повышенное. Большей частью это фторопластовые элементы.
  3. Импульсными. Используются для формирования повышенного скачка напряжения, а также его перевода на принимающую панель устройства.
  4. Высоковольтными. Применяются в высоковольтных приборах. Производятся в разнообразном исполнении. Встречаются масляные и керамические, плёночные и вакуумные. Они заметно отличаются от других деталей и имеют ограниченный доступ.
  5. Помехоподавляющими. Предназначены для смягчения в частотной вилке электромагнитного фона. Имеют незначительную собственную индуктивность, что даёт возможность повысить резонансную частоту, а также увеличить полосу сдерживаемых частот.

Если сравнивать в процентном отношении, то наиболее значительное число неисправных элементов приходится на случаи, когда наблюдается подача напряжения превосходящее стандартные показатели. Оплошности в проектировании вполне могут вызвать неисправности элементов.

Когда диэлектрик утрачивает свои характеристики и свойства, то могут возникнуть сбои и перепады в деятельности конденсатора. Например, при его растрескивании, вытекании или высыхании. Ёмкость может сразу измениться. Определить её значение возможно только благодаря измерительным устройствам.

Алгоритм диагностики мультиметром

Тестирование конденсаторов рекомендуется проводить после их изъятия из электроцепи. Таким образом достигаются более верные показатели.

Центральным показателем конденсаторов является способность пропускать только ток переменного характера. Постоянный же ток он способен пропускать лишь небольшой промежуток времени и исключительно в начале процесса. Сопротивление здесь напрямую зависит от ёмкости.

Как произвести тестирование полярного конденсатора

Для диагностики элемента мультиметром, потребуется обеспечить ёмкость, которая не будет превышать показатель равный 0,25 мкФ.

Алгоритм проверки неисправностей конденсатора при помощи мультиметра следующий:

  1. Потребуется взять электрический компонент за ножки и закоротить его каким-то предметом из металла, например, это может быть пинцет или отвёртка. Это надлежит сделать для разрядки элемента. Искры, которые появятся при этом, дадут знать, что разряд произошел.
  2. Затем надлежит установить переключатель мультиметра в режим замера данных сопротивления или на прозвонку.
  3. Далее следует прикоснуться щупами к выводам конденсатора, при этом следует учитывать их полярность, то есть к минусовой ножке подвести щуп чёрного цвета, а к плюсовой — красного. При этом происходит выработка постоянного тока, поэтому через определённый отрезок времени можно ожидать минимальное сопротивление электрического компонента.
Читайте также:
Крышка-биде: описание и фото

В то время, когда щупы располагаются на вводах конденсатора, происходит его подзарядка. Продолжает повышаться сопротивление пока не достигнет максимального уровня.

Если при соединении со щупами прибор начинает пищать, а стрелка его склоняет к нулевой отметке, то это говорит о наличии короткого замыкания. Оно и вывело из строя работу конденсатора. При указании стрелки на единицу, можно предположить, что в конденсаторе произошёл внутренний обрыв. Подобные элементы можно признать испорченными и заменить. Если на приборе, спустя некоторое время, единица высвечивается, то деталь в порядке.

Важно сделать измерения таким образом, чтобы на их качество не повлияло неправильное поведение. Запрещается в продолжении диагностики прикасаться руками к щупам. Человеческое тело имеет небольшой показатель сопротивления, поэтому соответствующие данные утечки будут превышать его многократно.

Ток последует по пути наименьшего сопротивления и обойдёт конденсатор. Таким образом мультиметр представит ложный результат измерений. Можно разрядить электрический компонент благодаря лампе накаливания. В подобном случае процесс станет идти более плавным образом.

Разрядку необходимо производить в обязательном порядке, тем паче, если элемент является высоковольтным. Это делают из-за соблюдения норм безопасности, а также, чтобы сам прибор остался в рабочем состоянии. Его способно привести в негодность остаточное напряжение.

Неполярный конденсатор и его диагностика

Такого рода элементы проверить с помощью мультиметра ещё легче. Вначале на самом приборе проставляют предельный показатель измерения на мегаомы. Затем прикладывают щупы. Если данные на приборе будут менее 2 Мом, то это показатель неисправности конденсатора.

В период подзарядки элемента с помощью мультиметра можно продиагностировать его работоспособность, когда ёмкость колеблется от 0,5 мкФ. Если показатель меньше, то измерения будут незаметны на приборе. Когда требуется протестировать элемент менее 0,5 мкФ на мультиметре, то это можно сделать, если будет короткое замыкание между обкладками.

При исследовании неполярного конденсатора, у которого напряжение выше 400 В, то это возможно выполнить при зарядке его от источника, ограждённого от к.з. автоматическим выключателем. По порядку с конденсатором соединяют резистор, сопротивление его должно быть предусмотрено свыше 100 Ом., что ограничит мощность первичного токового броска.

Возможно определить работоспособность конденсатора и другим способом, например, протестировав его на искру. Заряжают электрический компонент до рабочей ёмкости, а потом выводы закорачивают при помощи металлической отвёртки, у которой имеется изолированная ручка. По мощности разряда делают вывод о работоспособности компонента.

До зарядки, а также через время после неё, следует измерить на ножках детали показатели напряжения. Существенным является способность заряда продолжительное время сохраняться. Затем потребуется разрядка конденсатора с помощью резистора, благодаря которому он и производил зарядку.

Определение ёмкости конденсатора

Ёмкость — это основополагающая характеристика конденсатора. Её требуется измерять для определения того, что накапливает сам элемент, а также удовлетворительно ли удерживает заряд.

Для того, чтобы удостовериться в работоспособности компонента, надлежит измерить данный параметр и сравнить его обозначенным на самом корпусе. Перед проверкой любого конденсатора на эффективность и функциональность, требуется принять во внимание некоторую особенность данной процедуры.

Пытаясь произвести измерение при помощи щупов, возможно не добиться желаемых результатов. Доступным может стать только проверка общей работоспособности обследуемого конденсатора. Для чего выставляют режим прозвона, затем прикасаются к ножкам щупами.

Справочная информация! Когда последует писк, то надлежит поменять щупы местами, тогда звук повторится. Его будет слышно при показателях ёмкости в районе от 0,1 мкФ. Чем выше данное значение, тем продолжителльнее воспроизводится звук.

Если требуются точные результаты, то наилучшим выходом в подобной ситуации является применение модели, которая имеет особые контактные площадки, а также способность регулировки вилки, которая вычисляет емкость элемента.

Прибор следует переключить на номинальное значение, которое прописано на корпусе. Затем требуется вставить электрический компонент в посадочные «гнезда», произведя перед этим его разрядку при помощи металлического предмета.

На экране будут высвечиваться показатели ёмкости, приблизительно равные номинальным. Если этого не наблюдается, тогда надлежит сделать вывод, что конденсатор неисправен. Следует отследить, чтобы в мультиметре была новая и работоспособная батарейка. Это предоставит наиболее точные показания.

Определение напряжения при помощи мультиметра

Проверить исправную работу конденсатора возможно благодаря измерению напряжения, сравнив затем полученный результат с номиналом. Для выполнения диагностики, необходим источник питания, у которого напряжение должно быть немного меньше, чем у исследуемого элемента.

Например, если у конденсатора показатель в 25 В, то подойдёт 9-вольтный источник. Подсоединяют щупы к ножкам, предварительно обращая внимание на полярность, затем ждут немного времени — примерно несколько секунд. Случается, что время прошло, а просроченный компонент всё еще функционирует, хотя характеристики приведены иные. В подобном случае его требуется систематически контролировать.

Мультиметр следует настроить на режим определения напряжения и производят диагностику. При быстром появлении на дисплее значения равного номинальному, элемент полностью годен к использованию. В противоположном случае конденсатор надлежит поменять.

Проверка конденсаторов без выпаивания из платы

Можно обойтись без выпаивания из платы конденсаторов для их тестирования. Главное условие, чтобы сама плата была полностью обесточена. После обесточивания потребуется определённое время подождать, чтобы электрические компоненты разрядились.

Следует знать, что для получения 100% результата, невозможно будет обойтись без выпаивания элемента из платы. Детали, которые располагаются рядом, мешают достоверной проверке. Надлежит удостовериться лишь в отсутствии пробоя.

Для проверки исправного функционирования конденсатора, не выпаивая, необходимо к выводам элемента прикоснуться щупами для измерения сопротивления. Исходя из разновидности конденсатора, будет отличаться и диагностика самого параметра.

Советы по проверке электронных компонентов (конденсаторов)

У конденсаторных элементов имеется одно не очень приятное свойство. Дело в том, что при пайке, когда происходит воздействие на детали тепла, они часто не подлежат восстановлению. Однако качественно исследовать элемент возможно лишь, если выпаять его из схемы. В ином случае детали, которые находятся поблизости, станут его шунтировать. По данной причине необходимо учитывать определённые нюансы.

Когда продиагностированный конденсатор можно будет снова впаять в схему, потребуется ввести в работу ремонтируемый прибор. Это позволит отследить его работу. Если работоспособность благополучно возобновилась, устройство стало функционировать эффективнее, то протестированный компонент меняет на новый.

Важная информация! Для сокращения проверки, следует выпаивать не два, а лишь один из выводов. Требуется учитывать и понимать, что для подавляющего большинства электролитических элементов данный способ нельзя применять. Это связано со специфическими конструктивными особенностями самого корпуса.

Если схема сложная и включает в себя значительное количество конденсаторов, то дефекты вычисляют благодаря измерению напряжения на них. При несоответствии параметра требованиям, деталь, которая вызывает подозрение, надлежит убрать и произвести проверку.

Читайте также:
Монолитное строительство: преимущества и недостатки

При фиксировании в схеме сбоев, требуется перепроверить дату изготовления электронного компонента. Усыхание элемента происходит в течение пяти лет функционирования и составляет более 65%. Подобную деталь, даже если она в рабочем состоянии, надлежит заменить. В противоположном случае она станет ухудшать работу всей схемы.

Мультиметры современного поколения отличаются тем, что их наивысшим показателем для измерения является параметр ёмкости, который варьируется в районе 200 мкФ. При превышении данного показателя контрольный прибор способен выйти из рабочего состояния, даже если он и имеет предохранитель. В электротехнике нового поколения есть высокотехнологичные smd электроконденсаторы. Их отличие и преимущество состоит в очень небольших размерах.

Выпаять один вывод от подобного компонента очень непростая задача. Здесь наилучшим выходом будет поднять один из выводов уже после отпаивания, затем произвести изоляцию его от схемы, или вовсе отделить два вывода.

Итоги и практические рекомендации

Нет особого смысла покупать сложное и дорогостоящее оборудование для того, чтобы произвести тестирование конденсаторов. Вполне возможно применять с данной целью обычный мультиметр с подходящим диапазоном. Самое важное — это грамотно и правильно использовать его возможности.

Хотя мультиметр не является узкоспециализированным прибором и его возможности ограничены, для диагностических мероприятий и ремонта огромного количества популярных радиоэлектронных приборов, этого вполне хватит.

Дополняйте, пожалуйста, своим комментариями расположенный ниже блок, публикуйте фотографии и задавайте вопросы любой сложности по предложенной теме статьи. Расскажите о своём опыте, как вы проводили диагностику конденсаторов на эффективность и работоспособность. Делитесь рекомендациями и полезной информацией, которая может пригодится пользователям сайта.

Как проверить конденсатор?

Проверка конденсаторов цифровым мультиметром

При конструировании и ремонте электронной техники часто возникает необходимость в проверке радиоэлементов, в том числе и конденсаторов.

В сети много рекомендаций о том, как проверить конденсатор омметром. Когда-то я и сам применял такую методику. О ней я ещё расскажу.

Но на данный момент могу утверждать точно, что достоверно определить исправность конденсатора можно лишь с помощью прибора, который способен измерить его электрическую ёмкость.

Перед тем, как начать проверку конденсатора необходимо определить его тип. Все они делятся на две группы:

Неполярные. К ним относятся конденсаторы, в которых диэлектриком является слюда, керамика, бумага, стекло, воздух. Как правило, их ёмкость невелика и лежит в пределах от нескольких пикофарад до единиц микрофарад.

Полярные. К полярным конденсаторам относятся все электролитические конденсаторы, как с жидким электролитом, так и твёрдым. Их ёмкость уже лежит в диапазоне от 0,1 до 100000 микрофарад.

Среди неисправностей конденсаторов можно выделить три основных:

Электрический пробой. Как правило, пробой вызван превышением допустимого рабочего напряжения на обкладках конденсатора.

Обрыв. При обрыве конденсатор электрически представляет собой два изолированных проводника не имеющих никакой ёмкости. Обычно обрыв образуется вследствие механического воздействия, тряски или вибрации. Его причиной может быть некачественная конструкция элемента, а также нарушение допустимых режимов эксплуатации.

Повышенная утечка. Изменение сопротивления диэлектрика между обкладками. При такой неисправности ёмкость конденсатора становится заметно ниже, он не способен сохранять заряд.

Список неисправностей у электролитических конденсаторов заметно шире. В основном это касается алюминиевых электролитических конденсаторов, которые очень активно используются для фильтрации пульсирующего напряжения во всевозможных выпрямителях.

Потеря ёмкости, повышенная утечка.

Как уже говорил, достоверно проверить исправность конденсатора можно лишь с помощью прибора, который способен измерить его ёмкость. Как правило, для этих целей применяются измерители индуктивности и ёмкости (LC-метры). Они довольно дороги.

Но, несмотря на это, можно найти доступный по цене мультиметр с функцией LC-метра. Например, в моей мастерской имеется мультитестер Victor VC9805A+.

Он имеет 5 пределов измерения и способен определить ёмкость в диапазоне от 20 нанофарад (20nF) до 200 микрофарад (200μF). С его помощью можно измерить ёмкость, как обычных неполярных конденсаторов, так и полярных электролитических.

20 нФ (20nF)

200 нФ (200nF)

2 мкФ (2μF)

20 мкФ (20μF)

200 мкФ (200μF)

Максимальный предел измерения ограничен значением в 200 микрофарад (мкФ), что не так уж и много, если учесть, что ёмкость электролитических конденсаторов порой доходит и до 10000 мкФ.

Измерительные щупы прибора подключаются к гнёздам измерения ёмкости (обозначается как Cx). При этом нужно соблюдать полярность их подключения.


Разъём измерения ёмкости (Сх)

На фото показан процесс измерения ёмкости конденсатора номиналом 100nF (0,1 мкФ). Для измерения выбран предел в 200 нанофарад.

Как видим, ёмкость соответствует той, что указана в маркировке на корпусе – 104,7nF. Конденсатор исправен.

А вот пример неисправного металлоплёночного конденсатора К73-17 на 100nF. Я его выявил совершенно случайно, полагал, что он полностью исправен.

Отмечу лишь то, что изначально я проверял данный конденсатор мультиметром в режиме омметра. Тогда я не обнаружил ничего подозрительного. На деле же он оказался неисправен, имел очень маленькую ёмкость, всего 737 пикофарад.

На следующем фото проверка этого же конденсатора универсальным тестером.

Именно поэтому для проверки конденсаторов стоит использовать тестер с функцией замера ёмкости. Это даст наиболее достоверный результат.

Исключением может быть электрический пробой, который легко обнаружить с помощью омметра, а порой и чисто визуально при внешнем осмотре. Вот пример.

На фото пробитый неполярный конденсатор на рабочее напряжение 1,2kV.

При значительном превышении рабочего напряжения на конденсаторе, между его обкладками происходит электрический пробой. На корпусе пробитых конденсаторов можно обнаружить потемнения, вздутия, тёмные пятна и другие внешние признаки повреждения элемента.

Корпус может быть расколотым или иметь на поверхности сколы и трещины.

Электрический пробой конденсатора в электронной схеме преобразователя может стать причиной выхода из строя компактной люминесцентной лампы. Об этом я упоминал на странице про устройство ламп КЛЛ.

Стоит отметить тот факт, что пробой у алюминиевых электролитических конденсаторов встречается довольно редко. Обратная ситуация наблюдается у танталовых конденсаторов, которые в силу своих особенностей плохо выдерживают даже незначительное превышение рабочего напряжения.

При измерении ёмкости у электролитического конденсатора стоит знать одну особенность. Так как допуск у них очень большой, порой достигающий 30%, то разброс значения ёмкости может быть весьма приличный. В таком случае не стоит считать конденсатор негодным. Кроме этого, многое зависит от того, каким прибором пользуетесь.

Читайте также:
Как правильно красить кирпичную стену

Вот список реальной ёмкости новых конденсаторов. Измерения проводились универсальным тестером LCR-T4:

2200 μF (35V) – реальная 2155μF (Jamicon);

470 μF (25V) – реальная 420,9μF (EPCOS);

220 μF (400V) – реальная 217,7μF (SAMWHA);

100 μF (450V) – реальная 98,79μF (Jamicon);

100 μF (400V) – реальная 101,1μF (SAMWHA);

82 μF (400V) – реальная 75,65μF (Jamicon);

82 μF (450V) – реальная 77,46μF (SAMWHA);

82 μF (450V) – реальная 77,05μF (CapXon);

68 μF (450V) – реальная 66,43μF (Jamicon);

33 μF (160V) – реальная 31,99μF (SAMWHA);

22 μF (250V) – реальная 22,21μF (SAMWHA);

Как видим, самым некачественным оказался конденсатор EPCOS B41828 105 0 C 470μF(M)25V.

Эти же конденсаторы были проверены мультиметром Victor VC9805A+. Так вот, он показал ёмкость конденсаторов меньше. Для кондёра 220μF (400V) он вообще намерил 187μF!

Неисправность электролитического конденсатора можно определить при внешнем осмотре. Если корпус его имеет разрыв насечки в верхней части корпуса – 100% его надо менять. Разрыв защитной насечки на корпусе свидетельствует о том, что на конденсатор действовало завышенное напряжение, вследствие чего и произошёл, так называемый, “взрыв”.

Как уже говорилось, пробой алюминиевых электролитических конденсаторов явление достаточно редкое. Вместо этого имеет место такой вот “взрыв” или “вздутие”. Происходит это от того, что при превышении допустимого напряжения или при переполюсовке, в конденсаторе начинается бурная химическая реакция. Она приводит к нагреву и испарению электролита, пары которого давят на стенки корпуса и разрывают защитный клапан.


“Взорвавшийся” электролитический конденсатор

Такие дефекты конденсаторов появляются, например, при воздействии мощного электрического разряда на электронный прибор во время грозы или сильных скачков напряжения в электроосветительной сети 220V.

Аналогичный эффект “вздутия” алюминиевого электролитического конденсатора проявляется и при его длительной эксплуатации. Так как электролит жидкий, то он имеет свойство испаряться при нагреве и длительной эксплуатации.

Стоит отметить, что конденсатор нагревается не только снаружи, но и изнутри. Связано это с наличием эквивалентного последовательного сопротивления (ESR). При испарении электролита ёмкость конденсатора заметно снижается. Со временем он всё сильнее “вздувается”. Про такой конденсатор говорят, что он высох.

При ремонте электронной аппаратуры порой бывают случаи, что в блоке питания прибора, отслужившего не один год, можно обнаружить целую грядку таких “дутышей”.

Потеря ёмкости может быть причиной поломки телевизора. Такая неисправность не редкость. Об одной из них я уже рассказывал здесь.

Современные ЖК-телевизоры “конденсаторная чума” также не обходит стороной. Ознакомьтесь.

В современных условиях, когда имеет место широкое распространение импульсной техники, такой параметр, как ESR необходимо учитывать при тестировании электролитических конденсаторов. На сайте имеется таблица со значениями ESR новых конденсаторов разной ёмкости. В некоторых случаях, можно ориентироваться на неё.

Но, стоит знать, что в этой таблице приведены величины ESR преимущественно для одной серии конденсаторов (Jamicon, серия TK). Эта серия не относится к конденсаторам с низким ESR или низким импедансом (Low ESR/Low Impedance). Отличительным её свойством является широкий температурный диапазон эксплуатации, а данные о ESR в даташите на серию вообще не приводятся.

Так как большинство мультиметров не поддерживают функцию замера ESR, то при необходимости лучше приобрести специализированный тестер или универсальный тестер радиокомпонентов. Это незаменимый прибор в мастерской радиолюбителя и любого радиомеханика.

Меры предосторожности при проверке электролитических конденсаторов.

При проверке электролитического конденсатора необходимо полностью его разрядить! Особенно этого правила стоит придерживаться при проверке конденсаторов, имеющих большую ёмкость и высокое рабочее напряжение. Если этого не сделать, то можно испортить измерительный прибор высоким остаточным напряжением.

Например, часто приходиться проверять исправность конденсаторов, которые применяются в импульсных блоках питания. Их ёмкость и рабочее напряжение достаточно велики и при неполном разряде могут привести к порче мультиметра.

Поэтому перед проверкой их следует обязательно разрядить, закоротив выводы накоротко (для низковольтных конденсаторов с малой ёмкостью). Сделать это можно обычной отвёрткой.


Электролитический конденсатор ёмкостью 220 мкФ и рабочим напряжением 400 вольт

Конденсаторы с ёмкостью более 100 мкФ и рабочим напряжением от 63V желательно разряжать уже через резистор сопротивлением 5-20 килоОм и мощностью 1 – 2 Вт. Для этого выводы резистора соединяют с выводами конденсатора на несколько секунд, чтобы убрать остаточный заряд с его обкладок. Разряд конденсатора через резистор применяется для того, чтобы исключить появление мощной искры.

При проведении данной операции не стоит касаться руками выводов конденсатора и резистора, иначе можно получить неприятный удар током при разряде обкладок. Резистор лучше зажать пассатижами в изоляции и уже тогда соединить его с выводами конденсатора.

При закорачивании выводов заряженного электролитического конденсатора проскакивает искра, иногда очень мощная.

Поэтому следует позаботиться о защите лица и глаз. По возможности применять защитные очки или держатся от конденсатора при проведении таких работ подальше.

Проверка конденсаторов с помощью омметра.

Самым доступным и распространённым прибором, с помощью которого можно провести тестирование конденсатора, является цифровой мультиметр, включенный в режим омметра.

Поскольку конденсатор не пропускает постоянный ток, то сопротивление между его выводами (обкладками) должно быть очень большим и ограничиваться лишь так называемым сопротивлением утечки. В реальном конденсаторе диэлектрик, несмотря на то, что он является изолятором, всё-таки пропускает незначительный ток. Обычно, этот ток очень мал и не учитывается. Он называется током утечки.

Данный способ подходит для проверки неполярных конденсаторов. У них сопротивление утечки бесконечно большое и, если измерить сопротивление между выводами такого конденсатора цифровым мультиметром, то прибор зафиксирует бесконечно большое значение.

Обычно, если у конденсатора присутствует электрический пробой, то сопротивление между его обкладками составляет довольно малую величину – несколько единиц или десятки Ом. Пробитый конденсатор, по сути, является обычным проводником.

На практике проверить на пробой любой неполярный конденсатор можно так:

Переключаем мультиметр в режим измерения сопротивления и устанавливаем самый большой из возможных пределов. Для цифровых мультитестеров серий DT-83x, MAS83x, M83x, это будет предел 2M (2000k), то бишь, 2 мегаома.

Далее подключаем измерительные щупы к выводам проверяемого конденсатора. Если он исправен, то прибор не покажет никакого значения и на дисплее засветиться единичка. Это свидетельствует о том, что сопротивление утечки более 2 мегаом.

Этого достаточно, чтобы в большинстве случаев судить об исправности конденсатора. Если цифровой мультиметр чётко зафиксирует какое-либо сопротивление, которое меньше 2 мегаом, то, скорее всего, конденсатор имеет большую утечку.

Читайте также:
Мангалы для дачи с крышей: создание навеса своими руками

Следует учесть, что держаться обеими руками выводов конденсатора и металлических щупов мультиметра при измерении нельзя! В таком случае прибор зафиксирует сопротивление вашего тела, а не сопротивление конденсатора. Поскольку сопротивление тела человека меньше сопротивления утечки, то ток потечёт по пути наименьшего сопротивления, то есть через ваше тело по пути рука – рука. Результат измерения будет некорректный. Об этом простом правиле стоит помнить при проверке и других радиодеталей.

Проверка полярных электролитических конденсаторов с помощью омметра несколько отличается от проверки неполярных.

Сопротивление утечки полярных конденсаторов обычно составляет не менее 100 килоОм. Для более качественных конденсаторов это значение составляет не менее 1 мегаома.

При проверке таких конденсаторов омметром следует сначала их разрядить, замкнув выводы накоротко. Если этого не сделать, то есть риск сжечь мультиметр.

Далее необходимо установить предел измерения сопротивления не ниже 100 килоОм. Для упомянутых выше конденсаторов это будет предел 200k (200000 Ом). Далее соблюдая полярность подключения щупов, измеряют сопротивление утечки.

Так как электролитический конденсатор имеют довольно большую емкость, то при проверке он начнёт заряжаться. Этот процесс занимает несколько секунд, в течение которых сопротивление на цифровом дисплее будет расти – показания на нём будут увеличиваться. Это будет продолжаться до тех пор, пока конденсатор полностью не зарядится. Если значение измеряемого сопротивления перевалило за 100 килоОм, то в большинстве случаев можно с достаточной уверенностью судить об исправности проверяемого элемента.

Одной из рядовых неисправностей электролитических конденсаторов является частичная потеря ёмкости. В таких случаях его ёмкость заметно меньше, чем указанная на корпусе. Определить такую неисправность при помощи омметра сложно. Я бы сказал, что невозможно. Для точного обнаружения такой неисправности, как потеря ёмкости потребуется измеритель ёмкости, который есть не в каждом мультиметре.

Также с помощью омметра трудно обнаружить такую неисправность конденсатора как обрыв.

Для полярных электролитических конденсаторов косвенным признаком обрыва может служить отсутствие изменения показаний на дисплее мультиметра при замере сопротивления.

Для неполярных конденсаторов малой ёмкости обнаружить обрыв практически невозможно, поскольку исправный конденсатор имеет очень высокое сопротивление. Заряд ёмкости такого конденсатора проходит очень быстро и из-за этого невозможно определить имеет ли конденсатор хоть какую-то ёмкость. На дисплее мультиметра показания меняться не будут, как это происходит при заряде ёмкого электролитического конденсатора.

Как вы уже поняли, обнаружить обрыв в неполярном конденсаторе можно лишь с помощью прибора для измерения ёмкости.

На практике обрыв в конденсаторах встречается довольно редко, в основном такое бывает при механических повреждениях. Куда чаще при ремонте аппаратуры приходиться заменять конденсаторы, имеющие электрический пробой либо частичную потерю ёмкости.

Проверка конденсатора стрелочным омметром.

Ранее, когда среди радиолюбителей были распространены стрелочные омметры, проверка конденсаторов проводилась похожим образом. При этом конденсатор заряжался от батареи омметра и сопротивление, показываемое стрелкой прибора, росло. В конечном итоге величина его достигала значения сопротивления утечки.

По скорости отклонения стрелки измерительного прибора от нуля и до конечного значения оценивали и емкость электролитического конденсатора. Чем дольше проходила зарядка (дольше отклонялась стрелка прибора), тем, соответственно, была больше ёмкость. Для конденсаторов с небольшой ёмкостью (1 – 100 мкф) стрелка измерительного прибора отклонялась достаточно быстро, что свидетельствовало о небольшой ёмкости, а вот при проверке конденсаторов с ёмкостью от 1000 мкф и более, стрелка отклонялась значительно медленнее.

Проверка конденсаторов с помощью омметра является косвенным методом. Более точную и правдивую оценку об исправности конденсатора и его параметрах позволяет получить мультиметр с возможностью измерения электрической ёмкости.

Как правильно проверить, работает ли конденсатор

Достаточно большое количество людей хотели бы научиться с помощью мультиметра проверять работоспособность конденсатора.

В этой статье мы расскажем, как это делается, ведь, на самом деле, это не так уж и трудно, главное правильно использовать тестер и выполнять некоторые предписания.

Необходимые приготовления

Перед проверкой характеристик, конденсатор должен быть обязательно полностью разряжен. Разрядка производится при помощи отвертки: вы должны добиться появления небольшой искры, прислонив окончание отвертки к двум бочонкам конденсатора (прикосновение должно быть одновременным). Вот и все, можете начинать проверку.

Основной способ – проверка мультиметром

Данный вид тестера наиболее подходящий способ, чтобы проверить рабочие характеристики конденсатора, в случае его «отказа» работать. С его помощью можно узнать о обрыве в бочонке, также он покажет возможное наличие замыкания и сообщит о показании емкости конденсатора.

Перед началом проверки стоит узнать о типе конденсатора, который может быть электролитическим (полярным) либо неполярным. В случае проверки первого варианта, вам придется соблюдать полярность, вследствие чего присоединение плюсового щупа должно осуществляться только к ножке с плюсом и наоборот, минусовая ножка будет соединена с минусовым щупом. Технологию проверки конденсатора неполярного типа вы узнаете чуть ниже, однако в этом случае, полярность соблюдать не требуется. Итак, приступим к обсуждению выполнения действий проверки.

Перед началом использования мультиметра внимательно изучите все обозначения, нанесенные на его лицевую сторону, а также проследите за правильным подключением щупалец к тестеру.

Измерение показателей сопротивления

Чтобы проверить тестером сопротивление конденсатора, требуется отпаять бочонок и щипцами переложить его любое удобное место. Далее следует переключить мультиметр, направив ручку переключения в сектор Ω, который отвечает за измерение сопротивления. Строго соблюдая полярность, приложите щупы к ножкам и обратите внимание на показания, которые появятся на экране тестера. Оно сразу же будет расти, так как цифровой мультиметр автоматически будет производить зарядку конденсатора.

Если деталь не повреждена, то через определенный промежуток времени вы увидите на дисплее показатель равный 1. Единица также может появиться на экране сразу после соприкосновения щупов с выводами, что будет означать неисправность бочонка. Если же вы увидите на дисплее 0, значит следует вести речь о коротком замыкании внутри конденсатора.

Также, для измерения сопротивления можно использовать стрелочный мультиметр, при этом определение данного значения будет еще легче. Стрелка должна повышать значение постепенно, если же она стоит на нуле или сразу «прыгнула» на максимум – кондер неисправен.

Внимательно следите за полярностью, так как перепутав ее, вы можете привести конденсатор в негодность. В качестве совета можем сказать – изготовители «кондеров» наносят галочку для определения минуса.

Исправность конденсатора неполярного типа можно проверить, прикоснувшись щупами мультиметра к выводам, при этом соблюдать полярность не требуется, а диапазон измерений должен быть установлен в значение 2 МОм. В случае появления значения, которое будет меньше двух, конденсатор требуется подвергнуть замене, так как он сломан.

Читайте также:
Как утеплить потолок в гараже. Материалы. Отделка пенопластом, пеноплэксом, минеральная ватой и керамзитом. Процесс теплоизоляции

Данный тип проверки используется для предметов, емкость которых превышает 0,25 мкФ. Не все изделия с меньшим показателем будут работать в таком режиме.

Определение емкости

Определить целостность бочонка можно также с помощью измерения его емкости. Для этого выставьте на тестере требуемый режим измерений и вставьте изделие в специальные отверстия, которыми оснащен мультиметр. Если их нет, то, как и в случае с определением сопротивления, прислоните щупы к ножкам и посмотрите значение на табло. Показатели емкости должны равняться цифрам, указанным на оболочке конденсатора. Если же они не совпадают – изделие непригодно для дальнейшего использования.

Определить емкость не менее важно чем узнать показатели сопротивления. Более точно данные измерения можно провести с помощью цифровой модели мультиметра.

Как измерить напряжение

Измерив напряжение бочонка и сравнив его с номинальным значением, вы также сможете определить степень его исправности. Для этого нужно найти источник питания, напряжение которого будет меньше чем у измеряемого конденсатора. Зарядите им конденсатор, не забывая о соблюдении полярности. Как правило зарядка продлиться не более нескольких секунд. Далее с помощью тестера, переведенного в требуемый режим, определите показатели напряжения. Как и в случае с емкостью, показатели должны быть схожими с номинальным значением.

Более точные показания при измерении напряжения вы можете наблюдать в самом начале проверки. Связано это с тем, что заряд конденсатора будет со временем уменьшаться.

Еще одна важная деталь – бочонки с большой емкостью элементарно проверяются при помощи обыкновенной изолированной отвертки. Прислонив ее конец к полностью заряженному конденсатору, вы можете увидеть очень яркую искру. В таком случае бочонок исправен, если же искры нет либо она едва заметна – он сломан.

Альтернативный метод проверки исправности конденсатора

Данный способ не требует специального оборудования, однако он не даст точных показаний параметров бочонка. Для его осуществления вам понадобится самодельная контрольная лампа, которая сможет проверить бочонок на замыкание. Перед проверкой зарядите конденсатор и провода самодельной прозвонки прислоните к ножкам изделия. Если вы увидели искру, то ваша деталь исправна.

На заметку

В некоторых случаях можно сэкономить время, проверив состояние конденсатора, не прибегая к помощи специальных тестеров. Для этого следует внимательно осмотреть бочонок, состояние которого может выдавать неисправность. В верхней части детали имеется крестик, который может иметь пробой либо на нем видны следы протекания, что будет свидетельствовать о неисправности кондера. Также он может изменить цвет или форму, что будет означать его поломку. К тому же, проблема не всегда в конденсаторе, повреждение может быть в схеме, которые будут внешне заметны.

Не стоит проводить измерения конденсатора, предварительно не отделив его от схемы, так как вы не сможете добиться точных показаний мультиметра из-за близкого нахождения других элементов платы.

Полезное видео

Визуально ознакомиться с этапами проверки конденсатора вы можете на видео ниже:

Проверка конденсатора мультиметром

Для проверки работоспособности радиоэлементов существует несколько приемов и приборов. В частности, для измерения емкости и проверки состояния конденсаторов лучше всего подходит LC-метр. Однако в ситуациях, когда его нет под рукой, может выручить обычный мультиметр.

Содержание:

  1. Как он работает и зачем он нужен
  2. Подготовка перед проверкой
  3. Ход проверки
  4. Проверка на ёмкость
  5. Проверка вольтметром
  6. Проверка на короткое замыкание
  7. Проверка автомобильного конденсатора

Как работает конденсатор и зачем он нужен

Конденсатор – это пассивный электронный радиоэлемент. Его принцип действия схож с батарейкой – он аккумулирует в себе электрическую энергию, но при этом обладает очень быстрым циклом разрядки и зарядки. Более специализированное определение гласит, что конденсатор – это электронный компонент, применяемый для аккумуляции энергии или электрического заряда, состоящий из двух обкладок (проводников), разделенных между собой изолирующим материалом (диэлектриком).

Так каков принцип действия этого устройства? На одной пластинке (отрицательной) собирется избыток электронов, на другой — недостаток. А разница между их потенциалами будет называться напряжением. (Для строгого понимания нужно прочесть, например: И.Е. Тамм Основы теории электричества)

В зависимости от того, какой материал используется для обкладки, конденсаторы разделяют на:

  • твердотельные или сухие;
  • электролитические – жидкостные;
  • оксидно-металлические и оксидно-полупроводниковые.

По изолирующему материалу их делят на следующие виды:

  • бумажные;
  • плёночные;
  • комбинированные бумажно-плёночные;
  • тонкослойные;

Чаще всего необходимость проверки с использованием мультиметра возникает при работе с электролитическими конденсаторами.

Ёмкость конденсатора находится в обратной зависимости от расстояния между проводниками, и в прямой – от их площади. Чем они больше и ближе друг к другу – тем больше ёмкость. Для её измерения используется микрофарад (mF). Обкладки изготавливаются из алюминиевой фольги, скрученной в рулон. В качестве изолятора выступает слой окисла, нанесенный на одну из сторон. Для обеспечения наибольшей ёмкости устройства, между слоями фольги прокладывается очень тонкая, пропитанная электролитом, бумага. Бумажный или пленочный конденсатор, сделанный по данной технологии, хорош тем, что обкладки разделяет слой окисла в несколько молекул, благодаря чему и удается создавать объемные элементы с большой ёмкостью.

На сегодня конденсаторы используются практически в каждой электронной схеме. Их выход из строя чаще всего связан с истечением срока годности. Некоторым электролитическим растворам присуще «усыхание», в процессе которого уменьшается их ёмкость. Это сказывается на работе цепи и форме сигнала, проходящего по ней. Примечательно, что это характерно даже для неподключенных в схему элементов. Средний срок службы – 2 года. С этой периодичностью и рекомендуется проводить проверку всех установленных элементов.

Подготовка перед проверкой

В первую очередь следует выбрать инструмент для проведения проверки. Сегодня в широком ассортименте можно найти мультиметры с аналоговой стрелочной индикацией и жидкокристаллическим дисплеем. Последние отличает высокая точность измерений и удобство эксплуатации, однако для проверки конденсаторов многие предпочитают брать стрелочный мультиметр – легче и понятнее отследить плавное перемещение стрелки, чем «прыгающие» цифры.

Стоит упомянуть, что конденсатор пропускает переменный ток в обоих направлениях, а постоянный – в одном до полной зарядки. У мультиметра есть собственный источник питания, который, соответственно, обладает своей полярностью и номинальным напряжением. Эту особенность инструмента и используют для диагностики.

Для подготовки к проверке:

  • Переведите переключатель в рабочее положение для измерения сопротивления, чаще всего он обозначается аббревиатурой OHM или символом Ω. В некоторых источниках говорится, что удобнее поставить «на сигнал», однако это менее эффективно – этот способ позволит проверить элемент на пробой, без учета других причин неисправности.
  • Отградуируйте прибор с помощью механической регулировки, необходимо, что стрелка совпадала с крайней риской.
  • Снять заряд с конденсатора. Этот пункт обязателен даже для тех деталей, которые не были выпаяны из схемы – на выводах может оставаться остаточное напряжение. Для его снятия нужно замкнуть клеммы. Для небольших элементов подойдет любой проводящий предмет – отвертка, нож, пинцет и т.д. Для конденсаторов с большой ёмкостью, рассчитанные для работы в 220 В сети лучше воспользоваться пробником с одной лампой, 380 В – с несколькими последовательно подключенными. Соблюдайте предельную осторожность и не соединяйте выводы элемента друг с другом – даже пусковой конденсатор, применяемый в бытовой технике, может нанести сильный вред организму.
Читайте также:
Как почистить матрас от мочи – избавляемся от пятен и неприятного запаха

Ход проверки

Для начала следует провести внешний осмотр радиоэлемента, не выпаивая его из платы. О неисправности или выходе из строя могут говорить вздутие корпуса, изменение его окраски, признаки температурного воздействия (потемнение платы, дорожки отходят от поверхности и т.п.). Если электролитический раствор протекает наружу, снизу в месте крепления к плате должны остаться характерные подтеки. Для проверки фиксации на плате можно осторожно взять элемент и несильно покачать из стороны в сторону. Если одна из ножек оборвана, это сразу будет понятно по свободному ходу.

Кстати, надо заметить, современное элементы снабжены специальными щелями для безопасного выхода схемы из строя. Иначе взрыв мог бы сильно испортить всю плату.

Перед тем как проверить элемент мультиметром, следует определить его тип: полярный или неполярный. Электролитические относятся к первой категории – их припаивают к контактам на схеме с соблюдением полярности: плюс – к плюсу, минус – к минусу. Соответственно, и клеммы мультиметра следует подключать согласно данному правилу. Неполярный конденсатор устанавливается без учета этих особенностей. Он, как и бумажный или керамический конденсатор, можно присоединяться к прибору в любом направлении.

Закоротим выводы и попробуем прозвонить элемент тестером. Если прибор показывает минимальное сопротивление, конденсатор исправен и начал заряжаться постоянным током. Во время этого процесса показатель сопротивления будет расти до предельного значения или бесконечности. Поведение показателей имеет значение – стрелка аналогового тестера должна перемещаться медленно без скачков. О том, что работоспособность нарушена, говорят следующие факторы:

  • При подключении клемм, тестер сразу показывает бесконечность. Это говорит об обрыве в конденсаторе.
  • Мультиметр показывает на ноль и издает звуковой сигнал – значит произошло короткое замыкание или пробой.

В обоих случаях исправность элементов уже не восстановить и их следует выбросить.

Для того чтобы проверить, работает ли неполярный конденсатор, необходимо выбрать на мультиметре предел для измерения в мегаомах и прикоснуться контактами прибора к выводам – исправный элемент не показывает сопротивлния выше 2 мОм. Стоит помнить, что проверка элемента мультиметром на короткое замыкание, не поддерживается большинством современных приборов, если номинальный заряд радиоэлемента ниже 0,25 мкФ.

Проверка на ёмкость

Проверив сопротивление, мы лишь частично выполняем условия. Простая работоспособность элемента еще не говорит о том, что он работает правильно – в некоторых случаях очень важна точность в работе, к примеру, если проверяется конденсатор микроволновки или колебательного контура. Чтобы убедиться в том, что конденсатор накапливает и удерживает заряд, нужно проверить емкость.

Для этого нужно повернуть тумблер мультиметра на режим CX. Здесь стоит сказать, что проведение этой процедуры возможно лишь с помощью качественного цифрового прибора, но даже в таком случае точность измерений остается приблизительной. При использовании стрелочного инструмента стрелка после подключения начинает быстро отклоняться. В свою очередь это лишь косвенное доказательство исправности элемента, лишь подтверждающее то, что он набирает заряд. О том, как правильно подключать тестер к конденсатору в режиме ёмкости должно быть указано в инструкции пользователя. Не забывайте, что электролитический конденсатор необходимо присоединять, соблюдая полярность. Как правило, анодный (положительный) контакт несколько длиннее катодного (отрицательного).

Ниже размещено интересное радиолюбительское видео, где в середине проводится измерение емкости.

Предел измерения следует выбирать исходя из значения емкости, указанного на корпусе конденсатора. Так, к примеру, если номинальная емкость составляет 9,5 мкФ, необходимо измерять её, переведя тумблер на значение 20 µ. Если итоговые показатели измерений сильно отличаются от номинальных, значит радиодеталь неисправна.

Проверка вольтметром

Если под рукой не оказалось тестера, проверить работоспособность элемента можно с помощью другого электроизмерительного прибора – вольтметра.

  1. Рекомендуется, но не обязательно, отсоединять деталь от электрической цепи – можно проверить все и на плате, отсоединив только один контакт.
  2. Теперь нужно зарядить конденсатор под напряжением ниже номинала. К примеру, для 25V-ного конденсатора подойдет 9V, а для 600V-ного – 400V. Подсоедините прибор и дайте несколько секунд для зарядки. Во избежание порчи во время зарядки следует проверить полярность выводов и клемм. Время зарядки зависит от разности номинала и питающего напряжения. Так, высоковольтный конденсатор можно зарядить только с помощью мощного прибора, превышающего эту величину.
  3. Через некоторое время конденсатор необходимо подключить к вольтметру и замерить напряжение. Для определения исправности надо зафиксировать начальный показатель – если он приблизительно равен или чуть ниже номинала, то элемент исправен. Значительно меньшее напряжение говорит о том, что конденсатор быстро теряет заряд и уже не может выполнять свою задачу (в среднем обычный конденсатор должен удерживать номинальный заряд на протяжении не менее получаса). После подключения через вольтметр радиоэлемент начнет разряжаться, поэтому важно записать напряжение, показанное сразу после подключения.

Проверка на короткое замыкание

Обратите внимание, что данный способ относительно небезопасен и не рекомендуется его использование людьми без необходимого опыта и знаний.

  1. Для начала следует отсоединить конденсатор от схемы и ненадолго (до 4 сек) подключить к источнику питания.
  2. Отсоединив от источника питания, замкните выводы конденсатора с помощью электропроводящего инструмента (отвертка, пинцет, нож). Будьте осторожны: используйте для этого только заизолированный предмет или наденьте на руки резиновые перчатки.
  3. При замыкании выводов произойдет короткое замыкание, сопровождающееся вылетом искры, по виду которой и можно судить о состоянии элемента: если проскочила сильная и яркая искра, конденсатор в норме, тусклая и слабая искра говорит о неисправности.

А вот это видео мы настоятельно рекомендуем посмотреть, т.к. оно очень подробное и охватывает все аспекты нашей темы:

Проверка конденсатора на плате (не выпаивая)

На самом деле, механизм аналогичен, поэтому просто рекомендуем посмотреть это видео, оно должно закрыть все оставшиеся вопросы.

Проверка автомобильного конденсатора

В системах зажигания большинства современных автомобилей используется электронный коммутатор (по привычке называемый так же, как предшествующий ему механический прибор), распределяющий зажигание на свечи, которые, в свою очередь, подают искры на цилиндры двигателя. Считается, что поломка этого устройства требует его немедленной полной замены, однако, если причина неисправности в конденсаторе, используемом в конструкции, можно попробовать поменять только его. Для проверки на трамблере используется амперметр.

  1. Подключив амперметр к выводам конденсатора, включите зажигание и разомкните их.
  2. Обратите внимание на показатели амперметра – если стрелка сместилась с 2-4 А до нуля, наш элемент вышел из строя и надо его заменить.
Читайте также:
Манометр: конструкция прибора для измерения давления, его разновидности и особенности

Самостоятельно проверить автомобильный конденсатор можно и без специального оборудования. Для этого нужно подключить к контактам переносную лампочку небольшой мощности. Если радиоэлемент в порядке, то она не загорится после включения зажигания.

Γотовые и самодельные приборы для проверки конденсаторов

Одной из причин выхода из строя различного рода электронной аппаратуры, является пробой конденсатора. В статье будет описано: что такое конденсатор, основные типы, принцип работы конденсатора. Также будет предоставлена информация о том, как проверить элемент на работоспособность с выпаиванием и непосредственно на плате самостоятельно.

Что такое конденсатор

Конденсатором является электрическим элементом, который способен накапливать определенный электрический заряд. Главным параметром элемента считается емкость, которая рассчитывается в фарадах. 1 фарад это довольно большая величина. Современные конденсаторы имеют следующие обозначения емкости:

  • пикофарад обозначается pF или пФ;
  • нанофарад обозначается nF или нФ;
  • микрофарад обозначается mF или мФ.

Принцип работы устройства достаточно прост. Работа и выдача импульса отличается только от тока в цепи, к которой он подключен.

Цепь переменного тока

В цепи переменного тока конденсатор является сопротивлением. Он быстро накапливает определенный заряд и постепенно его отдает. Накопление и полная отдача происходит во время смены электрической волны.

Цепь постоянного тока

В цепи постоянного тока заряд накапливается на пластинах, увеличивая величину разницы потенциалов на обкладках. Разница потенциалов увеличивается до величины напряжения. Как только она становится равна напряжению, общая цепь разрывается.

Виды конденсаторов

Существует несколько видов и типов конденсаторов. Они разделяются между собой по следующему принципу:

  1. Изменение емкости. Это изменение классифицирует электронные элементы на постоянные, переменные и подстрочные.
  2. Материал диэлектрика может быть воздухом, слюдой, тефлоном, поликарбонатом, электролитом.
  3. Монтаж. По способу монтажа, эти радиодетали делятся на навесные и печатные.

Существуют несколько типов емкостных устройств, делящихся по принципу построения и работоспособности:

  1. Керамические. Эти элементы выполнены из диска, с обеих сторон имеющего проводник. Подобные печатные детали имеют малое рабочее напряжение, но большую емкость.
  2. Пленочные. Подобные конденсаторы имеют внутри корпуса скрученную в рулон пленку. Большой заряд и высокое рабочее напряжение удается разместить по всем слоям. Слои выполнены из фольги с диэлектриком на одной стороне.
  3. Электролитические. Эти устройства схожи по структуре с пленочными. Отличием является материал диэлектрика. Для этих печатных элементов диэлектриком является бумага, пропитанная электролитом.
  4. Переменные. Это устройства точной настройки приборов. Изменение емкости производится механическим способом.
  5. Подстрочные. Это элементы одноразовой настройки параметров в приборах. Подобная настройка выполняется только на заводах изготовителях.
  6. Пусковые. Это конденсаторы служат для запуска электрических двигателей. Они работают в цепи переменного тока в 220 вольт.

Определение параметров

Самостоятельно проверить элемент на работоспособность очень просто. Современные мультиметры и тестеры имеют для этого соответствующую функцию. Главным параметром при проверке будет соответствие заявленной и фактической емкости, а также пропускная способность радиодетали. Проводить проверку можно как на самой плате, так и произведя демонтаж детали с печатной платы.

Проверка емкости

Часто конденсаторы, — особенно старые — имеют нечеткое обозначение емкости на своем корпусе. Для того чтобы узнать емкость рабочего устройства, необходимо воспользоваться мультиметром, который имеет функцию замера емкости. Современные мультиметры имеют измерительный диапазон от 20 nF до 200 mF. Чтобы определить емкость не маркированного конденсатора, придется тестировать его в 5 режимах: 20 nF, 200 nF, 2 mF, 20 mF, 200 mF. Также придется учесть полярность, если элемент является полярным. Перед измерением необходимо выпаять конденсатор с цепи.

  1. Прибор переключается в режим проверки емкости. Обязательно переключение щупов в гнездо cX.
  2. Испытуемый элемент перед проверкой нужно разрядить. Это делается путем замыкания обоих концов.
  3. Оба щупа присоединяются к выводам.

Полученное значение является номиналом емкости.

Определение полярности

Для определения полярности можно провести визуальный осмотр корпуса. Определение «+»:

  1. Советские конденсаторы имели на корпусе знак «+» со стороны одной из ножек.
  2. Современные радиодетали также имеют обозначение на корпусе знаком «+».
  3. SMD конденсаторы имеют на одной из сторон знак «+» или маркируются цветной полосой.

Минус определяется также визуально:

Современные конденсаторы имеют различный цвет корпуса. На корпусах черного или синего цвета минус обозначается как полоса серебряного цвета или синяя стрелочка. SMD элементы имеют обозначение синей или черной полосой. Часто на них «+» сторона имеет выпуклость, а минус просто ровный на конце. Новые конденсаторы, еще до своего монтажа, имеют плюсовую ножку, которая гораздо длиннее минусовой.

Проверка мультиметром

Для определения полярности с помощью мультиметра, необходимо:

  1. Полностью разрядить деталь, закоротив ее выводы.
  2. Резистор присоединить к клемме «+» мультиметра.
  3. Второй конец резистора присоединить к выводу блока питания на 12 вольт.
  4. Резистор присоединить к выводу конденсатора.
  5. Минусовую жилу блока питания соединить со 2 выводом конденсатора.

Если мультиметр не покажет наличие тока в цепи, значит полярность элемента правильная. «+» жила блока питания была верно соединена с «+» конденсатора. Если мультиметр показал наличие тока, значит в цепи не была соблюдена полярность.

Проверка исправности конденсаторов

Современные мультиметры способны измерять и проверять работоспособность любых радиодеталей. Но не всегда этот прибор есть под рукой. Проверить конденсатор можно с помощью тестера.

Мультиметр

Если мультиметр имеет специальную функцию измерения емкости, значит с его помощью можно проверить любой тип устройства. Керамические, электролитические, пусковые радиодетали имеют одинаковый принцип работы, а значит и проверка исправности может проводиться одинаково.

Для проверки необходимо:

  1. Выпаять испытуемую деталь с платы и разрядить ее, замкнув контакты.
  2. Установить мультиметр в режим определения емкости «cX».
  3. Переключить прибор на определение максимального диапазона емкости.
  4. Щупы присоединить к ножкам или выводам конденсатора.
  5. Мультиметр покажет значение емкости. Если перед значением высвечивается один или несколько «0», то прибор переключается на более низкий параметр.

Полярные конденсаторы (если правильно соблюдена полярность) показывают постепенно повышающиеся значения от «0» до «1». Если дисплей показывает «1» без изменений, значит конденсатор нерабочий. Если показания равны «0», значит элемент замкнут внутри.

Читайте также:
Как правильно подключить розетку — подробная инструкция

Неполярные конденсаторы проверяют, выставив мультиметр на значение 2 Мом. Если показания выше этого значения, значит устройство исправно. Значения менее 2 МОм говорят о неисправности.

Тестер

Провести проверку конденсатора при помощи тестера можно только для определения общей исправности. Определить потерю емкости или разброс напряжения невозможно.

  1. Для проверки необходимо установить тестер в режим сопротивления.
  2. Выпаять и разрядить проверяемый элемент.
  3. Если радиодеталь является полярной, нужно подключить клеммы тестера к выводам согласно полярности.
  4. Полярные конденсаторы (имея большую емкость) несколько секунд будут заряжаться, неполярные покажут свое значение сразу.

Полярные конденсаторы должны показать медленно нарастающее значение более 100 кОм. Если это значение ниже, конденсатор является неисправным.

Неполярные покажут значение в 1 Ом. Если значение равное «1» достигнуто мгновенно, значит конденсатор неисправен. Значение в «0» говорит о внутреннем замыкании.

Проверка без выпаивания

Проверить конденсатор непосредственно на печатной плате очень проблематично. Во-первых, неисправный электрический прибор должен быть полностью обесточен. Также необходимо добиться разряда всех емкостных элементов в цепи. Проверка без выпаивания может показать значения сопротивления элементов, впаянных рядом. Но проверку все же можно провести при помощи индикатора-пинцета.

Первый способ

Первый способ наиболее простой. Испытуемый проверяется тестером и прозванивается мультиметром. Прибор ставится в режим проверки сопротивления. Также стоит учитывать полярность. Щупы мультиметра соединяются с выводами конденсатора и замеряется сопротивление. Стоит учитывать, что полученное значение не имеет никакой практической пользы, так как может являться показанием другого элемента. Таким способом можно проверить емкостную деталь на короткое замыкание. Если значения на дисплее начали расти постепенно, то печатная деталь заряжается от тестера и является исправной.

Второй способ

Второй способ требует припаять конденсатор с такими же значениями в схему рядом с испытуемым элементом. Впайку нужно провести параллельно. Оба элемента замеряются на обесточенной плате.

Важно! Без выпаивания можно проводить проверку только деталей, являющихся частью низковольтных цепей. Для высоковольтных цепей проводить такую проверку запрещено.

Третий способ

Часто возникает ситуация, когда на плате несколько конденсаторов, и определить какой из них неисправен очень сложно. Выпаивать каждый довольно трудоемко, часто они выходят из строя при нагревании. Для того чтобы проверить не выпаивая, необходимо провести замер выходящего напряжения. Он должен быть таким же, как указано на корпусе элемента. Если напряжения нет, то деталь пробита или замкнута. Если напряжение меньше оптимального значения, элемент потерял часть емкости.

Не выпаивая можно определить неисправный элемент визуально. Конденсатор может просто лопнуть, иметь на корпусе повреждения, нагар или вздутие.

Прибор своими руками

Для проверки конденсаторов можно собрать собственный прибор. Он будет определять емкость не хуже профессиональной аппаратуры. Собрать подобное устройство своими руками достаточно просто. С помощью этого прибора можно проверить работоспособность любых емкостных элементов и даже SMD.

Для прибора понадобятся следующие детали:

  1. Микросхема из серии 555, например, NE555 или отечественный аналог КР1006ВИ1. Данная микросхема является таймером времени, но в приборе будет играть роль генератора.
  2. Резисторы: R1 и R5 на 6.8 К. R12 на 12 К. R10 на 100 К. R2 и R6 на 51 К. R13 и R11 на 100 К. R3 и R7 на 68 К. R14 на 120 К. R4 и R8 на 510 К. R15 на 13 К.
  3. Конденсаторы: С1 емкостью 47nf, С2 на 470pf, С3 на 0ю47 mkF.
  4. VD1 подходит любой диод малой мощности, например, SOD 232.
  5. SA1 является любым переключателем на 5 положений.
  6. Мультиметр Х1.
  7. Батарея или блок питания до 12 вольт.

Принцип работы прибора заключается в следующем:

  1. Резисторы R1 и R8, вместе с конденсаторами С1 и С2, создают прямоугольные импульсы, которые регулируются при помощи переключателя SA1. Прибор работает в диапазоне частот от 25 и 2.5 kHz и 25–250 Hz.
  2. Заряд для испытуемого элемента подается через диод VD1.
  3. Разрядниками заряда являются резисторы R10, 12, 15.
  4. Образовавшийся разрядный импульс рассчитывается микросхемой 555. Длительность импульса приравнивается к емкости испытуемого элемента.
  5. Резистор R13 и конденсатор С3, стоящие на выходе, преобразуют импульс в электрический ток. Напряжение равно емкости испытуемой радиодетали.
  6. Напряжение на выходе поступает на мультиметр Х1, который показывает количество вольт, а значит общую емкость детали.

При помощи данного прибора можно проводить проверку конденсаторов емкостью от 20 pF до 200 mkF. Собирается схема на печатной плате, которая должна быть очищена от всех старых дорожек и вытравлена. Если сборка схемы проводится при помощи пайки проводами, нужно учитывать, что длина провода сильно влияет на длину импульса.

Принципиальная схема на печатной плате:

Основные неисправности конденсаторов

Емкостные элементы играют большую роль в принципиальной схеме любого устройства. Основная их функция — заряд определенным количеством тока и импульсный разряд в цепь. К основным неисправностям конденсаторов относятся:

  1. Обычный пробой. Пробой может быть вызван увеличением рабочего напряжения. Для ремонта требуется не только замена элемента, но и определение причины возникновения высокого напряжения.
  2. Внутренний обрыв. При обрыве радиодеталь теряет свою емкость, так как оба ее вывода становятся изолированными. Обрыв может возникнуть при падении прибора или некачественной сборки самого элемента.
  3. Утечка. Эта проблема связана с потерей части емкости. Чем меньше допустимая и оптимальная емкость, тем меньше размер заряда.

Полезные советы

Проверка конденсатора, особенно высоковольтного и пускового, связана с определенным риском.

Перед проверкой стоит учитывать:

  1. Если электрический прибор находится под напряжением или был отключен непродолжительное время, нельзя трогать печатную плату в районе конденсаторов. Устройство разрядится от прикосновения и последует удар током.
  2. Высоковольтные конденсаторы нельзя разряжать металлическим инструментом. Может возникнуть искра, а неизолированная часть предмета ударит током.
  3. Максимальная величина проверки для современных мультиметров, составляет 200 мкФ. Проверить большую величину не получится.
  4. Элементы емкостью менее 0.25 мкФ можно проверить только на замыкание.
  5. При проверке полярных устройств важно определить полюса элемента. Подключение тестера с изменением полюсов может привести к выходу из строя самого конденсатора.

Во время ремонта электроприборов любой мощности, следует четко соблюдать меры безопасности. Проверку любых радиодеталей можно производить только при обесточенном устройстве.

Видео по теме

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: